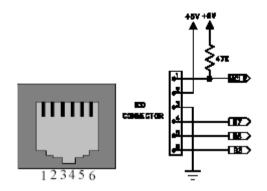

ユーザー・ハードウエア(ターゲット)への接続

ICD-U は MCLR, B7, B6 と B3 を経由してマイコンに接続されます。これら B6 と B7 を使って ICD はプログラムをダウンロードすることが出来、そして、マイコンのなかのデバッグ・モジュールと通信することが出来ます。B3 の接続はオプションです。これは PCW, PCWH でのデバッグ・モニターのために使用されます。もし、B3 が接続さる場合は、デバッグされるプログラムでは使用しないで下さい。もし、ポート B がプログラムで使用される場合は、ピン 3 をハイにして下さい。オプションで接続されない場合は、プルアップして下さい。

ある RAM と ROM 位置をデバッグするとき、プログラムの実行中に 1 レベルのスタックと B6, B7 ピンが使用されます。

ICD をユーザー・ハードウエアに接続する



123456

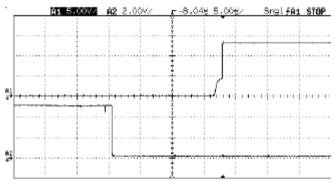
ICD ソケット		ターゲット・ピン
1	6	ターゲット PIC 上の B3 - これはオプションで す。アドバンスト・デバッグで使用されます。
2	5	ターゲット PIC 上の(ICSP clock)B6
3	4	ターゲット PIC 上の(ICSP data)B7
4	3	Ground
5	2	+5V ターゲットから ICD。 ICD はこのピンから電源供給されます。
6	1	MCLR - ターゲット PIC へ接続され、そして、 47K 抵抗でターゲット・ボード上で+5V にプルア ップされます。 ICD はチップ・プログラミング 中これを 13V で駆動します。

ノート:

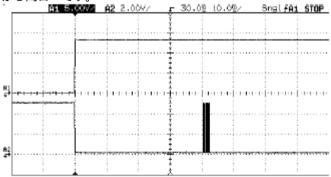
- 1. ICD は 50 mA 必要とします。ターゲットからの電源を使用しない場合は、ケーブルの ICD の 5 番ピンからターゲットの 2 番ピンへの接続を切断し、外部の 5V 電源を接続します。この方法はまた ICD コネクターを通じて ICD とターゲットの両方へ電源供給する場合に使用できます(ターゲットへ供給する場合は切断する必要はありません)。
- 2. ターゲット・ボード上で B6, B7 を他のコンポーネントに接続するの は避けて下さい。デバッグを行わない場合は、これらのピンはターゲット回路に使用することが出来ます。しかし、ターゲット回路がプロ グラミング中にハイ・インピーダンスを持っていることに注意して下 さい。
- 3. ICD は低電圧プログラミング・モードを使用しません。C プログラムは fuse が NOLVP にセットされてなければいけません。
- 4. ターゲット・チップ・上のオシレータは ICD がデバッガとして動作するために、動作(発信)していなければなりません。プログラミングはオシレータなしでおこなうことが出来ます。
- 5. B3 はオプションです。そして、プログラミングには使用しないで下さい。しかし、デバッガのモニター機能は B3 を使用します。モニターを使わないでプログラムとデバッグ、そして、B3 をターゲット・ハードウエアに割り当てることは可能です。もし、モニター機能を使用しない場合は、ユーザー・ストリームを Configure Tab でディスエーブル[Configure Tab Enable Userstream False]にすることが出来ます。そして、1-6 の接続は問題にはなりません。古いバージョンのソフトウエアでは Configure Tab を使ってユーザー・ストリーム[Enable Userstream]をディスエーブル[False にする]出来ませんので、ピンは常にハイにプルアップする必要があります。B3 は推奨されていてすべての PIC ピンをこの機能のために使うことが出来ます。
 - #use rs232 を debugger にすると monitor port に表示するのに初期値では B3 を用いる様設定されています。詳しくはコンパイラーのヘルプ・ファイルを見てください。
- 6. MCLR ピンはプログラミングとデバッギングに使用されます。プログラミング中の電圧は 13V です。ターゲット側の MCLR 回路のプルアップ抵抗は 47k~33k オームの範囲を推奨します。5V への 47K の抵抗は 13V に対するアイソレーションとしては十分です。しかし、もし、何かが MCLR ピンに接続されている場合は、13V が障害や干渉をしないように気をつけて下さい。

ICD からターゲット・ケーブルはピンを逆にしますので、MCLR 信号は ICD のピン 6 です。そして、ターゲットのピン 1 に接続されます。

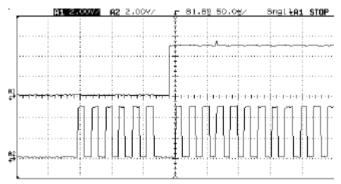
B6, B7 を使わないチップ

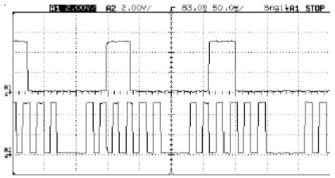

チップ	B6 の替わり	B7 の替わり
PIC12F629	GP1 (ICD clock)	GP0 (ICD data)
PIC12F675	GP1 (ICD clock)	GP0 (ICD data)
PIC12F683	GP1 (ICD clock)	GP0 (ICD data)
PIC16F630	RA1 (ICD clock)	RA0 (ICD data)
PIC16F676	RA1 (ICD clock)	RA0 (ICD data)
PIC16F684	RA1 (ICD clock)	RA0 (ICD data)
PIC16F688	RA1 (ICD clock)	RA0 (ICD data)

下記のチップは標準のバージョンではデバッギング能力を持っていません。 デバッグのためには XXX-ICD バージョンが必要です。XXX-ICD チップは 多くのピンを持っています。


ICD チップ	ピン数
PIC12F629	14
PIC12F675	14
PIC12F683	14
PIC16F630	20
PIC16F676	20
PIC16F627A	28
PIC16F628A	28

PIC16F648A	28
PIC16F684	20
PIC16F688	20


スコープ・ダイアグラム


上のラインは MCLR、そして、下のラインは B6. MCLR は 5V に達するのに 2us 近く必要とし、そして、13V へ増加します。B6 は MCLR が立ち上がる間ローです。

上のラインは MCLR、そして、下のラインは B6. MCLR が 13V に達した後、 約 40ms、 B6 は 5V に切り替わります。 時間は PC に依存します。

上のラインは B7、そして、下のラインは B6. このダイアグラムは MCLR がハイに達した後、約 81ms の動作を示しています。

上のラインは B7、そして、下のラインは B6. このダイアグラムは B6, B7 標準以上の動作を示しています。MCLR はコンスタントな 13V、B6, B7 シグナルが 0V から 5V に切り替わります。

接続チェック・リスト

MCLR は Vdd に対して 47K の抵抗

47KとICD(コンデンサーなし)以外はMCLRには接続しないで下さい。 B6, B7 のみ ICD へ接続されます。

B6, B7 から ICD ユニットへは約 30cm 以上のケーブルは使用しないで下さい。

ターゲットの Vdd は ICD へ接続して下さい。